| 1. | Step 2 : hidden nodes calculate their outputs 第2步:隐藏节点计算它们的输出 |
| 2. | Lastly , it isn t clear how this applies to nets with hidden nodes 最后,这不一定适用于存在隐藏节点的网络。 |
| 3. | For source code recognition , 6 to 8 hidden nodes seem to work very well 对于源代码的识别, 6到8个隐藏节点似乎工作得很好。 |
| 4. | Fuzzy cluster analysis method for determining the number of hidden nodes of feedforward neural networks 确定前向神经网络隐层节点数的模糊聚类分析法 |
| 5. | Is an algorithm that extends the analysis that underpins the delta rule to neural nets with hidden nodes 这一算法把支持delta规则的分析扩展到了带有隐藏节点的神经网络。 |
| 6. | The network can approximate any continuous function with any degree of accuracy provided its hidden nodes is as many as enough 只要隐层节点数足够多,网络就可以以任意精度逼近任意连续函数。 |
| 7. | For the commonly used three - layered neural network , how to select the number of the hidden nodes is always a real problem 对于常用的三层结构的神经网络,隐节点数目的确定一直是个难题,至今无定论。 |
| 8. | Where d for a hidden node n , turns on how much n influences any given output node ; and how much that output node itself influences the overall error of the net 其中d ( n )是隐藏节点n的函数,让我们来看( 1 ) n对任何给出的输出节点有多大影响; ( 2 )输出节点本身对网络整体的误差有多少影响。 |
| 9. | The program has a wrapper that deduces how many input nodes count and target are needed , based on the actual input file . choosing the number of hidden nodes is trickier 这个程序有一个包,它能够根据实际文件推断出需要多少输入节点(计算在内的和期望的) ,选择隐藏节点的数目是一个诀窍。 |
| 10. | Limiting ourselves to nets with no hidden nodes , but possibly having more than one output node , let p be an element in a training set , and t be the corresponding target of output node n 将我们的网络限制为没有隐藏节点,但是可能会有不止一个的输出节点,设p是一组培训中的一个元素, t ( p , n )是相应的输出节点n的目标。 |